

Supported by SRNSFG Grant Numb: MG TG-19-1447

The Uniform Subsets of the Eucliedean Plane

Mariam Beriashvili

I. Vekua Institute of Applied Mathematics Tbilisi State University

mariam_beriashvili@yahoo.com

January 30, 2020

Definition

Let X be a subset of \mathbf{R}^2 and \vec{e} is an arbitrary vector in \mathbf{R}^2 , X called an Uniform subset of \mathbf{R}^2 in direction \vec{e} if for each p' parallel to \vec{e} , we have

 $card(p' \cap X) \leq 1$

According to the standard terminology in N. N. Luzin, Collected Works (in Russian), Izd. Akad. Nauk SSSR, Moscow, 2 (1958)

Many years ago Luzin posed a problem, in particular Luzin asked whether there exists a function

$$\phi:\mathbf{R}\to\mathbf{R}$$

such that the whole plane \mathbf{R}^2 can be covered by countable many isometric copies of the graph of ϕ .

Partially, Sierpinski has answered to the Luzini Problem and under the Continuum Hypothesis has proved next theorem.

Sierpinski's Theorem.

Assuming Continuum Hypothesis in \mathbb{R}^2 there exists two subsets A and B, such that

- **(**) The set A is uniform with respect to the axis $\mathbf{R} \times \mathbf{0}$;
- **2** The set *B* is uniform with respect to the axis $0 \times \mathbf{R}$;
- Solution There exists a countable family {h_n : n > ω} of translations of R², for which we have

$$\cup \{h_n(A \cup B) : n < \omega\} = \mathbf{R}^2$$

Theorem of Davies

Let $(\vec{e_i})_{i \in \omega}$ be an injective countable family of vectors in \mathbb{R}^2 . Then there exists a family $\{X_i : i \in \omega\}$ of subsets of \mathbb{R}^2 such that

2 for each $i \in \omega$ the set X_i is uniform in direction $\vec{e_i}$.

Definition

Let \vec{e} be an arbitrary nonzero vector in \mathbf{R}^2 . A set $B \subset \mathbf{R}^2$ is finite in direction \vec{e} if

 $card(I \cap B) < \omega$

for any straight line $I \subset \mathbf{R}^2$ parallel to \vec{e} .

Theorem

Let $Z \subset \mathbf{R}^2$ be a finite set in direction \vec{e} , where \vec{e} is an arbitrary vector in the plane, then there exists an uniform set $X \subset \mathbf{R}^2$ in the same \vec{e} direction, such that Z is a countable many Π_2 -configuration of X.

Let *E* be a set and let *M* be a class of measures on *E* (in general, we do not assume that measures belonging to *M* are defined on the one and same σ -algebra of subset of *E*).

Definition

- We say that a set X ⊂ E is absolutely measurable with respect to M if X is measurable with respect to all measures from M.
- We say that a set Y ⊂ E is relatively measurable with respect to M if there exists at least one measure µ from M such that Y is µ-measurable.
- We say that a set Z ⊂ E is absolutely nonmeasurable with respect to M if there exists no measure from M such that Z is measurable with respect to all measures from M.

Measurability of the Uniform subset

Let Π_2 denote the group of all translations of the plane \mathbf{R}^2 and let λ_2 stand for the ordinary two-dimensional Lebesgue measure on \mathbf{R}^2 .

Theorem

There exists a Π_2 -invariant extension μ of the Lebesgue measure λ_2 , such that all uniform sets in direction *Oy*-axis are measurable with respect μ .

Corollary. The uniform set in any direction in \mathbb{R}^2 is absolutely measurable with respect to the class of all nonzero σ -finite Π_2 -invariant measures.

Theorem

Under **CH**, there exist a set A uniform in direction of *Oy*-axis and a set B uniform in direction of *Ox*-axis, such that $A \cup B$ is absolutely nonmeasurable with respect to the class of all Π_2 -invariant extensions of the Lebesgue measure λ_2 .

A.B. Kharazishvili *Questions in the theory of sets and in measure theory*, TSU, Tblisi, 1978

Let $M(\mathbf{R}^2)$ be a class of all nonzero σ -finite translation invariant measures on \mathbf{R}^2 .

Definition

A set $X \subset \mathbf{R}^2$ is called *negligible* with respect to $M(\mathbf{R}^2)$ if these two conditions are satisfied for X:

- there exists a measure $\nu \in M(\mathbf{R}^2)$ such that $X \in dom(\nu)$;
- for any measure $\mu \in M(\mathbf{R}^2)$, the relation $X \in dom(\mu)$ implies the equality $\mu(X) = 0$

A proper subclass of negligible sets, consisting of the so called absolutely negligible sets, is of special interest for the general theory of invariant measures.

Definition

A set $X \subset \mathbf{R}^2$ is called *absolutely negligible* with respect to $M(\mathbf{R}^2)$ if, for every measure $\mu \in M(\mathbf{R}^2)$, there exists a measure $\mu' \in M(\mathbf{R}^2)$ such that the relations

$$\mu'$$
 extends $\mu, Y \in \mathit{dom}(\mu'), \mu'(Y) = 0$

hold true.

In the paper

A. Kharazishvili, *Small sets in uncountable abelian groups*, Acta Univ. Lodz, Folia, Math No. 7 (1995) 31-39 has proved next statement:

Lemma

If $X \subset \mathbf{R}^2$ is finite in some direction \vec{e} , then M is negligible with respect to the class $M(\mathbf{R}^2)$.

Lemma

Every Hamel basis of the space \mathbf{R}^n is absolutely negligible subset of \mathbf{R}^n .

Notice that a more general result can be stated. For any natural number n, denote by H_n the set of all those vectors in \mathbb{R}^2 whose representation via the Hamel basis H contains at most n nonzero rational coefficients. Then each set H_n , $n < \omega$ turns out to be \mathbb{R}^2 -absolutely negligible in \mathbb{R}^2 .

[A. Kharazishvili, One property of Hamel bases, Bull. Acad. Sci. GSSR, 95, 2 (1979), 277-280.]

Theorem

There exists a uniform subset of \mathbb{R}^2 which is Hamel basis of \mathbb{R}^2 .

Remark: The proof of this result is similar to the proof of the fact that there exists a Mazurkiewicz set in \mathbf{R}^2 which is a Hamel basis of \mathbf{R}^2 .

In general, the solution of the Luzin Problem by Davis and the character of the uniform set infer that any uniform subset of \mathbf{R}^2 is Π_2 -negligible and not Π_2 -absolutely negligible.

In connection with this fact is interesting next question

Does there exists a subset of the Euclidean space \mathbb{R}^n which is Π_n -absolutely negligible and simultaneously, D_n -absolutely nonmeasurable? Where, D_n is the group of all motions (i.e. isometric transformations) of \mathbb{R}^n and Π_n the group of all translations of the space \mathbb{R}^n

References

- R. O. Davies, Covering the plane with denumerably many curves, J. Lond. Math. Soc. 38 (1963), 433–438
- A. B. Kharazishvili, Nonmeasurable Sets and Functions, North-Holland Math. Stud. 195, Elsevier Science, Amsterdam, 2004
- A. Kharazishvili, On Negligible and absolutely nonmeasurable subsets of the Euclidean plane, Georgian Mathematical Journal, , vol.3, 479-487;
- A.B. Kharazishvili Questions in the theory of sets and in measure theory, TSU, Tblisi, 1978